Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 12(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34821843

RESUMO

Deep-sea species endemic to hydrothermal vents face the critical challenge of detecting active sites in a vast environment devoid of sunlight. This certainly requires specific sensory abilities, among which olfaction could be a relevant sensory modality, since chemical compounds in hydrothermal fluids or food odors could potentially serve as orientation cues. The temperature of the vent fluid might also be used for locating vent sites. The objective of this study is to observe the following key behaviors of olfaction in hydrothermal shrimp, which could provide an insight into their olfactory capacities: (1) grooming behavior; (2) attraction to environmental cues (food odors and fluid markers). We designed experiments at both deep-sea and atmospheric pressure to assess the behavior of the vent shrimp Rimicaris exoculata and Mirocaris fortunata, as well as of the coastal species Palaemon elegans and Palaemon serratus for comparison. Here, we show that hydrothermal shrimp groom their sensory appendages similarly to other crustaceans, but this does not clean the dense bacterial biofilm that covers the olfactory structures. These shrimp have previously been shown to possess functional sensory structures, and to detect the environmental olfactory signals tested, but we do not observe significant attraction behavior here. Only temperature, as a signature of vent fluids, clearly attracts vent shrimp and thus is confirmed to be a relevant signal for orientation in their environment.

2.
Elife ; 82019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31383255

RESUMO

Alvinocaridid shrimps are emblematic representatives of the deep hydrothermal vent fauna at the Mid-Atlantic Ridge. They are adapted to a mostly aphotic habitat with extreme physicochemical conditions in the vicinity of the hydrothermal fluid emissions. Here, we investigated the brain architecture of the vent shrimp Rimicaris exoculata to understand possible adaptations of its nervous system to the hydrothermal sensory landscape. Its brain is modified from the crustacean brain ground pattern by featuring relatively small visual and olfactory neuropils that contrast with well-developed higher integrative centers, the hemiellipsoid bodies. We propose that these structures in vent shrimps may fulfill functions in addition to higher order sensory processing and suggest a role in place memory. Our study promotes vent shrimps as fascinating models to gain insights into sensory adaptations to peculiar environmental conditions, and the evolutionary transformation of specific brain areas in Crustacea.


Assuntos
Encéfalo/anatomia & histologia , Decápodes/anatomia & histologia , Animais , Organismos Aquáticos , Oceano Atlântico , Evolução Biológica , Fontes Hidrotermais
3.
Chem Senses ; 43(7): 489-501, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29931242

RESUMO

Chemoreception might play an important role for endemic shrimp that inhabit deep and dark hydrothermal vents to find food sources and to locate active edifices that release specific chemicals. We compared the chemosensory abilities of the hydrothermal shrimp Mirocaris fortunata and the coastal related species, Palaemon elegans. The detection of diverse ecologically relevant chemical stimuli by the antennal appendages was measured with electroantennography. The 2 species can detect food-related odor and sulfide, a short-distance stimulus, via both their antennae and antennules. Neither iron nor manganese, considered as long-distance stimuli, was detected by the antennal appendages. Investigation of the ultrastructure of aesthetasc sensilla revealed no specific features of the hydrothermal species regarding innervation by olfactory sensory neurons. Pore-like structures occurring in the aesthetasc cuticle and dense bacterial covering seem to be unique to hydrothermal species, but their potential link to chemoreception remains elusive.


Assuntos
Decápodes/fisiologia , Odorantes/análise , Palaemonidae/fisiologia , Sensilas/fisiologia , Animais , Fontes Hidrotermais , Microscopia Eletrônica de Transmissão , Sensilas/ultraestrutura , Sulfetos/análise
4.
Chem Senses ; 42(4): 319-331, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334209

RESUMO

The detection of chemical signals is involved in a variety of crustacean behaviors, such as social interactions, search and evaluation of food and navigation in the environment. At hydrothermal vents, endemic shrimp may use the chemical signature of vent fluids to locate active edifices, however little is known on their sensory perception in these remote deep-sea habitats. Here, we present the first comparative description of the sensilla on the antennules and antennae of 4 hydrothermal vent shrimp (Rimicaris exoculata, Mirocaris fortunata, Chorocaris chacei, and Alvinocaris markensis) and of a closely related coastal shrimp (Palaemon elegans). These observations revealed no specific adaptation regarding the size or number of aesthetascs (specialized unimodal olfactory sensilla) between hydrothermal and coastal species. We also identified partial sequences of the ionotropic receptor IR25a, a co-receptor putatively involved in olfaction, in 3 coastal and 4 hydrothermal shrimp species, and showed that it is mainly expressed in the lateral flagella of the antennules that bear the unimodal chemosensilla aesthetascs.


Assuntos
Decápodes/fisiologia , Fontes Hidrotermais , Sensilas/fisiologia , Adaptação Fisiológica , Animais , Receptores Ionotrópicos de Glutamato/análise
5.
J Exp Biol ; 219(Pt 23): 3696-3700, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27638619

RESUMO

Antennular chemoreception in aquatic decapods is well studied via the recording of single chemoreceptor neuron activity in the antennule, but global responses of the antennule (or antennae in insects) by electroantennography (EAG) has so far been mainly restricted to aerial conditions. We present here a well-established underwater EAG method to record the global antennule activity in the marine shrimp Palaemon elegans in natural (aqueous) conditions. EAG responses to food extracts, recorded as net positive deviations of the baseline, are reproducible, dose-dependent and exhibit sensory adaptation. This new EAG method opens a large field of possibilities for studying in vivo antennular chemoreception in aquatic decapods, in a global approach to supplement current, more specific techniques.


Assuntos
Células Quimiorreceptoras/fisiologia , Eletrofisiologia/métodos , Palaemonidae/fisiologia , Sensilas/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...